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A B S T R A C T

It is not currently known which individuals with chronic Chagas disease (ChD) will develop cardiopathy in a
determined period and which will be maintained asymptomatic with normal routine laboratory tests all their
lives. The parasite burden is a factor that could explain this different evolution. The objective of this study was to
quantify Trypanosoma cruzi burden by real-time PCR in blood (qPCR-B) and dejections of triatomines fed by
xenodiagnosis (qPCR-XD) in 90 individuals with chronic ChD untreated, classified according to XD results and
the presence or absence of cardiopathy. All individuals came from hyperendemic areas of Chile and participated
in the study under Informed Consent. The standard qPCR curves for qPCR-B and qPCR-XD were elaborated with
a mixture of known concentrations of T. cruzi strains, performing DNA serial dilutions (1/10) with a dynamic
range between 105 and 10−1 parasite equivalents/mL. The TaqManⓇ detection system was applied in a
Stratagene Mx3000P thermocycler (Agilent Technologies, USA) with cruzi 1 and cruzi 2 satellite primers. 22.2%
and 15.6% of cases with cardiopathy or without cardiopathy were XD positive. There was no significant dif-
ference between the groups. The positivity of qPCR-B and qPCR-XD in the positive XD group was 82.35% and
100%, respectively, while in the negative XD group was 55.26% and 42.10%, respectively. A superior qPCR
value in chronic ChD patients with and without cardiopathy was determined for qPCR in cases with positive XD
and positive qPCR-XD. The receiver operating characteristic (ROC) curve analyses show better accuracy for
detecting parasite burden (area under the curve, AUC) for qPCR-XD in comparison to qPCR-B. That is to say,
major performance in DNA samples obtained of positive XD (gold standard for viable T. cruzi) detected and
quantified by qPCR-XD. A high percentage of cases with XD and qPCR-XD positive (80–100%) have result
concordant with qPCR-B. In absence of XD, future challenges are especially related to the low parasitic load of
chronic ChD patients treated with trypanocidal drugs and post-therapy parasitological evaluations by qPCR-B.
Finally, no statistically significant differences were found between presence or absence of cardiopathy and XD,
qPCR-B or qPCR-XD.

1. Introduction

Chagas disease (ChD) caused by the kinetoplastid protozoan
Trypanosoma cruzi, is among the most neglected tropical disease in Latin
American (Fernández et al., 2019). The endemic area for vector-borne
transmission extends from the southern United States of America (USA)
to southern Argentina and Chile (Sosa-Estani and Segura, 2015). Pre-
sently, the number of international infected people estimated by the

World Health Organization amounts to 7–8 million and more than
10,000 deaths are assumed to happen yearly (Duschak, 2019). In Chile,
the endemic area is between the Arica-Parinacota (18°30′S) and
O´Higgins Regions (34°36′S), with a risk population of 873,415 persons
(MINSAL, 2014). While the interruption of the vector transmission and
improvement in the research systems is emphasized, the concern for
this disease seems to be decreasing with less diagnostic efforts and
lower education and by change in higher level. On the other hand the
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numbers show that the problem if it is not increasing, at least maintains
its careless historical magnitude (Canals et al., 2017). In Chile, the
biological vectors involved in the transmission of T. cruzi are insects of
the subfamily Triatominae: Triatoma infestans of domestic habits and
Mepraia spinolai, Mepraia gajardoi andMepraia parapatrica of wild habits
(Frías et al., 2017).

After the acute phase of infection, ChD enters a chronic phase, in-
itially with an indeterminate or latent form. Subsequently 20–30% of
patients develop cardiac abnormalities, 10% digestive disturbances,
3–4% neurologic alterations and 2–3% mixed forms (cardiac and di-
gestive) (Rassi et al., 2012). This phase is characterized by low, sub-
patent and fluctuating parasitemia evidenced by some parasitological
tests such xenodiagnosis (XD), specific procedure but of low perfor-
mance. Nevertheless, the application of conventional Polymerase Chain
Reaction (PCR) in dejections of triatomines used in XD applied in pa-
tients with ChD, has been shown to have high sensitivity in the detec-
tion of T. cruzi (Silber et al., 1997; Campos et al., 2007a; Zulantay et al.,
2011). In recent years, the quantitative modality of PCR or real-time
PCR (qPCR) has been successfully applied to detect, quantify and/or
genotype T. cruzi in the same reaction (Piron et al., 2007; Duffy et al.,
2009; Schijman et al., 2011; Ramírez et al., 2015; Muñoz et al., 2017).

In Saavedra et al. (2016), we described the T. cruzi parasitic load
determined by qPCR in peripheral blood (B) and dejections of triato-
mine fed by XD in individuals with chronic ChD. The objective of this
work was to determine in 90 cases with chronic ChD classified ac-
cording presence or absence of cardiopathy in pre-therapy condition,
the T. cruzi parasite burden in these types of biological samples received
under Consent Inform.

2. Material and methods

2.1. Type design study and population

This study is a quasi-experimental descriptive type. The studied
population corresponded to 90 non-treated chronic ChD, 45 with car-
diopathy (13 women and 32 men, between 30–79 years, average 57.8),
and 45 without cardiopathy (11 women and 34 men, between 20 and
76 years, average 47.1). All came from rural and urban zones of Illapel,
Salamanca and Combarbalá, Coquimbo Region, Chile (located between
29°02´ and 32°16´ South latitude in the area of transverse valleys of
Chile). The T. cruzi infection was established by the application of
conventional serological tests ELISA and IFI IgG for T. cruzi
(Muñoz et al., 2019).

2.2. Determination of cardiopathy

To all the patients of this study a twelve-lead electrocardiogram
(ECG) was performed. Each electrocardiographic tracing included the
following parameters: P axes, P duration, P-R space, R spaces, QT value,
QTc calculation, QRS axis, T axis, ventricular gradients, RV1 in-
trensicoide deflexion, SV1, RVS, Sokolow index and electrocardio-
graphic diagnosis. The final interpretation of this test data was per-
formed by a specialist cardiologist following the double-blind protocols
recommended by the World Health Organization (Maguire et al., 1982).
The non-cardiopaths corresponded to individuals with clinical and
physical evaluation, normal ECG without radiological or echotomo-
graphic study, according to current norms (MINSAL, 2017).

2.3. Xenodiagnosis (XD)

Was applied using the technique described by Schenone (1999).
Two cylindrical boxes, each containing seven infection-free Triatoma
infestans nymph of instars III and IV, were placed on of each of the
patients studied. The XD boxes were maintained at 27 °C with a relative
humidity of 70% in fasting conditions and after 30, 60 and 90 days of
incubation, the fecal samples (FS) of each insect were microscopically

examined to detect trypomastigote forms of T. cruzi.

2.4. Blood (B) and XD samples

Five mL of venous B of the 90 study subjects were received in the
same volume of 6M guanidine chlorhydrate 0.2M EDTA, pH 8.0 (GEB).
The GEB solution was incubated at 98 °C for 15min to break the
minicircles DNA of T. cruzi and stored at 4 °C until B-DNA extraction.
On the other hand, the dejections of XD were prepared as described
(Zulantay et al., 2011). Briefly, the dejection samples obtained at 30, 60
and 90 days, were received in 500 μL PBS buffer pH 7.2, incubated for
15 at 98 °C and centrifuged for 3min at 3500 rpm. A total of 200 μL
from each XD sample was recovered and stored at−20 °C until XD-DNA
extraction.

2.5. B-DNA and XD-DNA extraction

The B-DNA extraction was performed in an initial volume of 200 μL,
using the QIAampⓇ Blood Mini (Qiagen, Valencia, CA), according to the
manufacturer’s instructions, while the XD-DNA purification was per-
formed using an initial volume of 100 μL with the Favor Prep Blood
Mini Kit Genomic DNA (Favorgen, Biotech Corp.), modified by the
omission of lysis step of cells with proteinase K. The eluted samples
were maintained at −20 °C until qPCR-T. cruzi and qPCR-X12 were
performed in both samples.

2.6. Quantification B-DNA and XD-DNA

Was carried out using the kit AccueBlue™ dsDNA Quantification
(Biotum Inc.). Briefly, the protocol started by mixing the dsDNA
Quantitation Solution and the 100× Enhancer Solution in a 100:1
proportion. Then 40 μL of this mixture was loaded in each tube. After
this step, 2 μL from each of the eight DNA standards provided by the kit
(0, 0.5, 1, 2, 4, 6, 8 and 10 ng/μL dsDNA) were added to each tube.
Finally, after mixing and incubating for 5min in darkness at 25 °C, the
samples were scanned using the Quantitative Plate Read and the FAM
filter of the Mx3000P thermocycler (Agilent Technologies) (Bravo et al.,
2012).

2.7. Endogenous (qPCR-B) and exogenous internal control (qPCR-XD)

As described Pirón et al. (2007) and Saavedra et al. (2016) a human
qualitative internal control amplification in qPCR-B-T. cruzi was used.
The primers for cromosome 12 (X12) were designed by N. Jullien using
the AmplifX v.1.5.4 software and compared with Nucleotide BLAST
(National Library of Medicine) to discount any other unspecific am-
plification (N. Nazal, personal communication) (Table 1). Also, X12 was
used as qualitative exogenous internal control for qPCR-XD adding
50 μg of negative human blood DNA for T. cruzi before FS-DNA isola-
tion. As described (Bravo et al., 2012), the human DNA is degraded
completely by the triatomines within 30 days, for this reason, a system
novel primers using a segment of a DNA sequence which codifies for
X12 was designed, allowing ruling out inhibition and false negative
results due to DNA loss during the process of extraction.

2.8. qPCR-B and qPCR-XD standard curve

The standard curve for absolute quantification of T. cruzi was per-
formed using a stock of epimastigote forms of Dm28c (TcId) and Y
(TcII) strains, of highest and lowest number of copies, respectively. This
because to the variability described in the number of copies of the
nuclear satellite DNA (Kooy et al., 1989; Moreira et al., 2013). The
quantification of total T. cruzi-DNA was performed with the same
methodology as for B-DNA and XD-DNA samples. A T. cruzi-DNA con-
centration equivalent to 1×106 epimastigotes/mL was adjusted, con-
sidering that 1 parasite cell contains 200 fg of DNA (Duffy et al., 2009).
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So, T. cruzi free human GEB sample or dejection samples of triatomines
free of infection for T. cruzi were spiked with 1×106 parasite
equivalents/mL (par-eq/mL). Later, the standard curve was performed
with a 10-fold serial dilution of the DNA extracted from both initial
points with range between 105 and 0.1 par-eq/mL. Both curves were
maintained at −20 °C until use. Previously, 100 DNA samples of non-
chagasic patients and 20 DNA samples obtained of XD without infection
by T. cruzi were extracted with the same conditions of study group and
evaluated by qPCR-B-TaqManⓇ system detection. All the samples were
qPCR negative.

2.9. qPCR-T. cruzi and qPCR- X12

The TaqManⓇ detection system was applied in a Stratagene
Mx3000P™ thermocycler (Agilent Technologies) under conditions sug-
gested by the manufacturer. In the Table 1, are described the sequences
of primers for qPCR-T. cruzi and qPCR-X12 with the common amplifi-
cation cycles.

The reaction mixture consisted in 2 μL of B-DNA or XD-DNA, 10 μL
Brilliant Multiplex qPCR (Stratagene), 0.5 μL of a 1:500 dilution of a
reference dye (ROX), 0.5 μL of each nuclear primers cruzi 1 and cruzi 2,
0.2 μL cruzi 3 probe, 0.2 μL BSA (100×) and 6.1 μL Molecular Biology
Grade Water free of nucleases (Mo Bio Laboratories Inc) in a final vo-
lume of 20 μL. The controls used for qPCR-T. cruzi were as follows:
negative control, DNA of a non-chagasic patient confirmed by serology
(IIF and ELISA), evaluated previously with qPCR equipment and posi-
tive controls, DNA of an individual with ChD with confirmed para-
sitemia by PCR and evaluated previously in qPCR equipment. The
controls used for qPCR-X12 were: negative control, DNA of dejection
samples of T. infestans free of infection by T. cruzi and dejection samples
of T. infestans with infection by T. cruzi, both without and with presence
of mobile tripomastigotes under microscopic examination, respectively.
Also, in qPCR-B and qPCR-XD were included: two controls of T. cruzi, to
evaluate contamination in the preparation of the mixture reaction or
unspecific qPCR reactions, a control mixture of 20 μL of mixture reac-
tion for T. cruzi (without the sample under study), water control with
2 μL of water free of nucleases (Mo Bio Laboratories Inc.) and control T.
rangeli DNA. The measurement of emitted fluorescence was performed
at 60 °C at the end of each cycle. All the samples and controls were
tested in duplicate. The MxPro v 4.1 (Agilent Technologies) software
delivered automatically the par-eq/mL data.

2.10. Statistical analysis

The description of the data was performed using graphs (GraphPad
Prism 7.0 for Windows) and tables. The frequencies of positive XD
between cardiopaths and non cardiophats were compared by

=χ α( 0.05)1
2 . The qPCR value between the different groups was com-

pared by three-way ANOVA analysis (Tukey test α=0.05), considering
the qPCR value as response variable and as independent categorical
variables: presence of cardiopathy (cardiopaths v/s non cardiopaths),
xenodiagnóstico (positive v/s negative) and qPCR type (qPCRB v/s

qPCR-XD). As the variable response did not meet with the normality
criteria, logarithmic transformation was applied (log(qPCR + 1)). A
receiver operating characteristic (ROC) analysis was performed for
qPCR-XD and qPCR-B, determining the area under the curve (AUC), a
measure of the goodness of the methods. AUC near 100% are good,
being 50% that expected by simple chance. The break point of the curve
determines the threshold value to decide a positive result and their
respective sensitivity (S) and specificity (Sp).

2.11. Ethics statement

The patients participated under Informed Consent, approved by the
Ethical Committee of the Faculty of Medicine of the University of Chile
(Protocols 046/2011 and 048/2011).

3. Results

In this study, the difference between the ages of the cardiopaths and
non cardiopaths were significant (F1,86 = 12.34, p < 0.001). No dif-
ference between the ages of men and women was detected. XD was
applied in 90 individuals with non-treated chronic ChD. Globally, in 17
of them (18.9%), mobile trypomastigotes of T. cruzi were observed
under microscopy (positive XD). In detail, 10/45 (22.2%) and 35/45
(77.8%) of non cardiopaths group were positive and negative XD, re-
spectively. In the cardiopaths group, 7/45 (15.6%) and 38/45 cases
(84.4%) were positive and negative XD, respectively. No statistically
significant differences were found in XD results of both groups
(χ2

1 = 0.43, p=0.51, 95% CI) (Table 2).
The standard curve of qPCR-X12 presented average values of coef-

ficient of determinations (R²)= 0.993, slope=−3.440 and efficiency
(Eff)= 95.6%. All the qPCR-B-X12 and qPCR-FS-X12 had an acceptable
qualitative signal for X12 amplification, discarding false negatives re-
sults generated by PCR inhibitors in the samples that did not amplify for
T. cruzi. The Ct value obtained for the amplifications of qPCR-XD-X12
from 50 ng of DNA added to a sample of non-infected triatomine-FS was
29.30 and the range obtained in the 90 samples of study group was
average 27.70. In relation to qPCR-B-X12, the average Ct value ob-
tained for the study group was 25.80.

The qPCR-T. cruzi standard curve had average values of R²: 0.999,
slope: −3.359 and Eff: 98.5% and dynamic range 105 to 10−1 par-eq/

Table 1
Primers and probe used for Trypanosoma cruzi qPCR-TaqManⓇ in blood (B) and XD (dejection samples of triatomines) of individuals with non-treated chronic Chagas
disease.

Target Primers or probe Sequence (5´−3´) Cycle amplification

T. cruzi cruzi 1* Forward (5′-ASTCGGCTGATCGTTTTCGA-3′) 10min preincubation 95 °C
40 amplification cycles (95 °C for 15 s, 60 °C for 1 min).cruzi 2* Reverse (5′-AATTCCTCCAAGCAGCGGATA-3′)

cruzi 3* Probe (5–6-FAM-CACACACTGGACACCAA-NFQ-MGB-3′)
X12 N1×12⁎⁎ Forward (5´-AGCTGGCTAGACTGTCAT-3´)

N2×12⁎⁎ Reverse (5´-CTTTGCCGTTGAAGCTTG-3´)
N3×12⁎⁎ Probe (5´/56-FAM/TGGGACTTC/ZEN/AGAGTAGGCAGATCG/3IABkFQ/−3´)

⁎ (Piron et al., 2007).
⁎⁎ (Bravo et al., 2012).

Table 2
Xenodiagnosis results in 90 non-treated chronic Chagas disease individual with
and without cardiopathy.

ECG Negative Xenodiagnosis % N Total

% Positive %

Non cardiopaths 35 77.8 10 22.2 45 100
Cardiopaths 38 84.4 7 15.6 45 100
TOTAL 73 81.1 17 18.9 90 100

χ2
1= 0.43, p=0.51 (95% CI).
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mL. Parasitic load of T. cruzi determined in the study group by qPCR-B
and qPCR-XD are described in Tables 3 and 4.

In Table 3 is observed the quantification of T. cruzi by qPCR-B and
qPCR-XD in the 45 cases with cardiopathy, 7 (15.6%) with positive XD
and 38 (84.4%) with negative XD.

In the positive XD group, the positivity of qPCR-B and qPCR-XD was
85.7% and 100%, respectively, with different ranges of parasitemia.
Four (57.1%) and two (28.6%) cases with positive XD had parasitic load
between 0.1–0.99 and 1–9.9 par-eq/mL, respectively. One case with
positive XD was No Ct in qPCR-B. In this case, only 1/3 box of XD was
positive at 90 days of incubation (see S1). In relation to quantification
of T. cruzi by qPCR-XD, was possible to establish that in 4 of 7 cases
with positive XD (57.1%), the parasitic load fluctuated between 1 and
9.9 par-eq/mL. In this group the highest parasitic load fluctuated be-
tween 100 and 1.000 par-eq/mL (14.3%).

On the other hand, in 15/38 (39.5%) cases with negative XD, qPCR-
B showed a parasitic load between 0.1 and 0.99 par-eq/mL. In this
group, a single case presented a parasitic load of 1–9.9 par-eq/mL. For
the contrary, in 6 of 38 cases (15.79%) with negative XD, qPCR-XD had
a parasitic load between 0.1 and 0.99 par-eq/mL. The highest load
fluctuated between 10 and 99 par-eq/mL (2.63%). In 22 (57.9%) and
30 cases (78.9%) with negative XD, T. cruzi was not detected by qPCR-B
and qPCR-XD, respectively. The global positivity of qPCR-B and qPCR-
XD in the negative XD group was of 42.13% and 21.05%, respectively.

In Table 4 is observed the quantification of T. cruzi by qPCR-B and
qPCR-XD in the 45 cases without cardiopathy, 10 (22.2%) with positive
XD and 35 (77.8%) with negative XD.

In this positive XD group, the positivity of qPCR-B and qPCR-XD was
80.0% and 90%, respectively. In 8/10 cases (8.0%) qPCR-B fluctuated
between 0.1 and 9.9 par-eq/mL. When qPCR-XD was applied, was
possible to establish that in 3 cases (30%), the parasitic load fluctuated
between 0.1 and 9.9 par-eq/mL. The highest parasite burden was

detected in 6 cases (30%), with parasitic load between 10 and 1.000
par-eq/mL. In one case with positive XD T. cruzi was not detected by
qPCR-XD.

In the cases with negative XD, 4 cases (11.4%) had between 0.1 and
0.99 par. eq. /mL and only 1 case 1–9.9 par-eq/mL (2.9%). In 30 cases
(85.7%), T. cruzi was not detected by qPCR-B. Finally, in cases with
negative XD, qPCR-XD showed that in 6% of them (17.14%) had a
parasitic load between 0.1 and 9.9 par-eq/mL. The highest T. cruzi load
fluctuated between 10 and 1.000 par-eq/mL (5.8%). The global posi-
tivity of qPCR-B and qPCR-XD in the negative XD group was of 14.3%
and 23%, respectively.

A higher value was found in the qPCR for the cases who had positive
XD in comparison with the cases who had negative XD (F1,172= 89.76,
p < 0.0001). The higher values were found with qPCRXD
(F1.172= 74.22, p < 0.0001). A relationship was also found between
the positivity of XD and the biological sample used for qPCR
(F1,172= 55.20, p < 0.0001) explained by a greater change in the va-
lues of qPCR positive XD with the technique qPCRXD with respect to
negative XD (Fig 1).

The ROC curve analyses show a betters AUC for qPCR-XD
(AUC=0.902; IC0.95= [0.762–0.98]) than qPCR-B (AUC=0.747;
IC0.95= [0.571–0.914]). S and specificity Sp according to test: qPCR-
XD S=94.1% and Sp=86.3% and for qPCR-B S=82.4% and
Sp=72.6% (Fig 2).

Table 3
Parasitic load of Trypanosoma cruzi determined by real-time PCR in samples of
Triatoma infestans used in xenodiagnosis (qPCR-XD) and in peripheral blood
(qPCR-B) in 45 chronic chagasic individuals with cardiopathy.

Parasitic load range par-eq/
mL

Xenodiagnosis

Positive n=7 Negative n=38

qPCR-B qPCR-XD qPCR-B qPCR-XD

n % n % n % n %

No Ct 1 14.3 0 0 22 57.9 30 78.9
0.1–0.99 4 57.1 0 0 15 39.5 6 15.79
1–9.9 2 28.6 4 57.1 1 2.63 1 2.63
10–99 0 0 2 28.6 0 0 1 2.63
100–1000 0 0 1 14.3 0 0 0 0

Table 4
Parasitic load of Trypanosoma cruzi determined by qPCR in samples of Triatoma
infestans used in xenodiagnosis (qPCR-XD) and peripheral blood (qPCR-B) in 45
chronic chagasic patients without cardiopathy.

Parasitic load range par-eq/
mL

Xenodiagnosis

Positive n=10 Negative n=35

qPCR-B qPCR-XD qPCR-B qPCR-XD

n % n % n % n %

No Ct 2 20 1 10 30 85.7 27 77.1
0.1–0.99 7 70 2 20 4 11.4 3 8.6
1–9.9 1 10 1 10 1 2.9 3 8.6
10–99 0 0 3 30 0 0 1 2.9
100–1000 0 0 3 30 0 0 1 2.9

Fig. 1. qPCR value in chronic ChD patients with and without cardiopathy po-
sitive v/s negative XD with qPCR-B and qPCR-XD. Different letters represents
differences in Tukey comparisons at α=0.05.
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4. Discussion

In this study, the older ages of the cardiopaths is explained because
the evolution of heart involvement is a slow process that takes years
(Rassi et al., 2012). The XD positivity (17.5%), is the expected for in-
dividuals with chronic ChD, considering that with two boxes of XD the
sensitivity of circulating T. cruzi is 21.7% (Schenone, 1999). Previous
studies of our group described 21% and 14% of positive XD in groups of
different patients with chronic ChD (Zulantay et al., 2011; Saavedra
et al., 2016). No statistically significant differences was found between
the positivity of XD and the presence or absence of cardiopathy
(χ2

1= 0.43, p=0.51, 95% CI).
It is important to note that although XD is a valuable tool for the

detection of viability of T. cruzi, this technique is archaic (Tarleton and
Curran, 2012) and dependent operator, however, the main advantage
of conventional XD is its potential to confirm the presence of viable T.
cruzi (Amato Neto, 2012; Saavedra et al., 2013), a vital aspect in eva-
luations of chemotherapeutic efficacy of treated patients. In the present
study, like so many others, is evidenced the capacity of the biological
vector of T. cruzi to allow its multiplication (Kollien and Schaub, 2000).
Nevertheless, due to rejection of some patients, in our lasted study
protocols, conventional XD technique is no longer included.

It has been demonstrated that the limited sensitivity of direct ob-
servation of T. cruzi by conventional XD in man and different mammals
it is improved when qualitative PCR (semi-automated technique) is
applied in triatomine FS previously fed by XD (Breniere et al., 1995;
Dorn et al., 2001; Campos et al., 2007b; Pizarro et al., 2007; Zulantay
et al., 2011; Saavedra et al., 2013; Egaña et al., 2014; Oda et al., 2014;
Santana et al., 2014). This is possible because T. cruzi contain satellite
and kinetoplastid DNA (kDNA) with many repetitive and abundant
sequences that are well suited for the application of PCR (Sturm et al.,
1989; Avila et al., 1993; Requena et al., 1996; Elias et al., 2003; Duffy
et al., 2009; Qvarnstrom et al., 2012). This biological property has been
used for the successful standardization of qPCR what has allowed to
determine the parasitic load by T. cruzi (Piron et al., 2007; Duffy et al.,
2009; Moreira et al., 2013; Ramírez et al., 2015). Previous studies have
allowed us applied qualitative PCR in DNA extracted from FS used in
XD (Zulantay et al., 2011; Muñoz et al., 2013; Saavedra et al., 2013;
Ortiz et al., 2015), allowed to increase the sensitivity of XD and to
confirm the presence of viable T. cruzi. In this study, the parasitic load
in T. infestans fed by XD was quantified by qPCR-XD and qPCR-B in
patients that were classified according the presence or absence of car-
diopathy. This clinical antecedent was considered because currently no
biomarkers to assess which patients with chronic indeterminate ChD
will develop heart disease and which will spend their entire life in this

state (Apt et al., 2015).
In the group of patients with cardiopathy, the positivity of qPCR-B

and qPCR-XD in cases with positive XD was 85.7% and 100%, respec-
tively, while the positivity of qPCR-B and qPCR-XD in cases with ne-
gative XD was 42.13% and 21.05%, respectively. In patient without
cardiopathy, something similar is observed. In cases with positive XD,
qPCR-B and qPCR-XD detected T. cruzi in 80.0% and 90% of the cases,
respectively, while the positivity of qPCR-B and qPCR-XD in the nega-
tive XD group was of 14.3% and 23%, respectively. Considering the
global positivity, the major efficiency in to detect T. cruzi was qPCR-XD
in patients with positive XD, is to say, XD was efficient to amplify high
parasitemias. The statistical analysis evidenced the major qPCR value in
the positive XD with the qPCR-XD in relation with the negative XD
(F1,172= 55.20, p<0.0001). Nevertheless, if we considered at XD as
gold standard technique, three cases were false negative in the group of
patient without cardiopathy. The case 1 (see S1) was qPCR-B and qPCR-
XD negative, with positive XD at 90 days of incubation of the triato-
mines, suggesting a low but detectable parasitemia or an error in the
microscopic observation of the operator. It is also possible that the
sample of peripheral blood received at the same time as the application
of XD did not have circulating parasites. Finally, as demonstrated in this
study, qPCR-B it is less sensitivity that qPCR-XD (ROC curve analyses,
Fig. 2). The case 7 was positive XD at 30, 60 and 90 days of incubation
of triatomines with high burden parasite quantified by qPCR-XD (149.5
par-eq/mL). Clearly, the negative result in qPCR-B is not compatible
with the positive results of XD and qPCR-XD, nevertheless, the qPCR-B
remained negative despite repeated trials. Was T. infestans able to ef-
ficiently amplify an eventual low parasitemia? The possible answer
could be in some of the interesting aspects discussed in this topic:
number of boxes used, insects ingestion capacity (Castro et al., 1983;
Schenone, 1999); efficiency of the replication in the insect and the in-
itial inoculum (Apt et al., 2013); diuresis of triatomines after the high
initial blood supply (Kollien and Schaub, 1989), complexity of the
metabolome in feces of triatomines (Antunes et al., 2013), bacterial
microbiota in the insect gut (Gumiel et al., 2015), influence of starva-
tion on the development of T. cruzi in T. infestans or M. spinolai (Kollien
and Schaub, 1998; Cabe et al., 2019); mortality during the incubation
period, and the differential regulation of parasite populations
(García et al., 2010); T. cruzi genotypes amplified from simple and
mixed infections (García et al., 2010; Lima et al., 2014), species used in
the XD (Santana et al., 2014; Ortiz et al., 2015), inhibition of a clonal
genotype in mixed infection (Pinto et al., 1998) and different DTUs
population densities in the vector insect (Schaub, 1989). Recently, it is
described the importance of the survivorship of M. spinolai after feeding
and fasting in the laboratory to determine the competence of this

Fig. 2. ROC curves for qPCR-B and qPCR-XD in 90 non-treated chronic Chagas disease.
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biological vector of T. cruzi (Cabe et al., 2019).
With respect to the association between the different parasitological

tests and presence or absence of cardiopathy, there are no statistically
significant differences when XD was applied (χ2

1= 0.43, p=0.51, 95%
CI). Likewise, there are no statistically significant differences in the
qPCR value between cardiopaths and non cardiopaths (F1,172= 0.051,
p=0.82). Nevertheless, a superior value in the qPCR of cases with
positive XD in comparison with qPCR of cases with negative XD was
found (F1,172= 89.76, p < 0.0001). At the same time, higher values
were found for qPCR-XD (F1,172= 74,22, p < 0.0001). The statistical
analysis of results, allowed to found a interaction between the XD po-
sitivity and type of technique (F1,172= 55.20, p < 0.0001) by a biggest
change in the qPCR values in cases with positive XD respect to cases
with negative XD (Tukey test α=0.05, Fig. 1). Finally, differences
between qPCR-B and qPCR-XD were established (F1,172= 74.21, p <<
0.001). The ROC curve analyses show a betters AUC for qPCR-XD
(sensitivity = 94.1% and specificity = 86.3%) in comparison with
qPCR-B (sensibility = 82.4% and specificity = 72.6%) (Fig. 2). In the
negative XD group no differences were found with qPCRXD between
cardiopaths and non cardiopaths (χ2= 2.02, p=0.16). On the con-
trary, when only qPCRB is applied, the differences are statistically
significative (χ2= 6.18, p=0.013).

In others studies performed by our group in patients with positive
XD, the concordance between the positivity of qPCR-XD and qPCR-B
was 100% (Saavedra et al., 2013). In the present study, it was also
detected highest parasitemia when compared qPCR-B and qPCR-XD in
patients with positive XD. XD technique was useful to verify that qPCR-
B can detect and to quantify T. cruzi when the circulating parasitemias
are high. Nevertheless, a high percentage of cases with negative XD
were qPCR-B negative (57.9% and 85.7%, cardiopaths and non cardi-
opaths groups, respectively), with the important challenge for the la-
boratory researchers in cases with low and no quantifiable parasitemias
specially in treated and non-treated patients with tripanocidal drugs
evaluated with this parasitological tools. XD was a useful para-
sitological tool that gives way to new methodologies. Finally, a good
reason for receiving antiparasitic drugs, independent of age unless a
contraindication exists, is that low parasite burdens may still causing
damage to diana organs.

5. Conclusions

The statistical analysis it shows the major performance in DNA
samples obtained of positive XD (gold standard for viable T. cruzi) de-
tected and quantified by qPCR-XD. A high percentage of cases with XD
and qPCR-XD positive (80–100%) have result concordant with qPCR-B.
In studies were conventional XD is not applied, future challenges are
especially related to the low parasitic load of chronic ChD patients
treated with trypanocidal drugs and post-therapy parasitological eva-
luations by qPCR-B. Finally, we found that qPCRXD was the best and
more sensitive technique to detect parasitemia differences between
positive and negative XD.
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